Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
J Cell Mol Med ; 28(6): e18137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445791

RESUMO

Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Interleucina-7/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Hidroximetilglutaril-CoA Sintase
2.
Br J Cancer ; 130(8): 1388-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424167

RESUMO

BACKGROUND: Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS: We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS: Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION: These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.


Assuntos
Interleucina-7 , Neoplasias , Humanos , Animais , Camundongos , Interleucina-7/genética , Interleucina-7/farmacologia , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Análise de Sequência de RNA , Microambiente Tumoral/genética , Linfócitos T CD8-Positivos
3.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757633

RESUMO

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Assuntos
MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-7/genética , Interleucina-7/metabolismo , MicroRNAs/genética , Proliferação de Células , Antígenos CD19/genética , Antígenos CD19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
4.
J Clin Immunol ; 43(8): 1927-1940, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581646

RESUMO

Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients.


Assuntos
Interleucina-7 , Quinases Ativadas por p21 , Humanos , Recém-Nascido , Apoptose , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
5.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373104

RESUMO

Interleukin-7 (IL-7) plays a vital role in the homeostasis of CD4+ and CD8+ T cells. Although IL-7 has been implicated in T helper (Th)1- and Th17-mediated autoinflammatory diseases, its role in Th2-type allergic disorders, such as atopic dermatitis (AD), remains unclear. Thus, to elucidate the effects of IL-7 deficiency on AD development, we generated IL-7-deficient AD-prone mice by backcrossing IL-7 knockout (KO) B6 mice onto the NC/Nga (NC) mouse strain, a model for human AD. As expected, IL-7 KO NC mice displayed defective development of conventional CD4+ and CD8+ T cells compared with wild type (WT) NC mice. However, IL-7 KO NC mice presented with enhanced AD clinical scores, IgE hyperproduction, and increased epidermal thickness compared with WT NC mice. Moreover, IL-7 deficiency decreased Th1, Th17, and IFN-γ-producing CD8+ T cells but increased Th2 cells in the spleen of NC mice, indicating that a reduced Th1/Th2 ratio correlates with severity of AD pathogenesis. Furthermore, significantly more basophils and mast cells infiltrated the skin lesions of IL-7 KO NC mice. Taken together, our findings suggest that IL-7 could be a useful therapeutic target for treating Th2-mediated skin inflammations, such as AD.


Assuntos
Dermatite Atópica , Dermatopatias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/patologia , Citocinas , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-7/genética , Interleucina-7/metabolismo , Pele/patologia , Dermatopatias/patologia , Células Th2
6.
Blood ; 142(3): 274-289, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-36989489

RESUMO

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Assuntos
Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pimozida/uso terapêutico , Camundongos Transgênicos
7.
Mol Oncol ; 17(3): 384-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748568

RESUMO

Treatment with immune checkpoint inhibitors (ICIs) is frequently associated with immune-related adverse events (irAEs). A new study identified an interleukin 7 (IL-7) allelic variant-rs16906115-as a major risk factor for the development of ICI-associated irAEs. This association is of great significance as it indicates that germline genetic variants influence the occurrence of irAEs, thus opening a new avenue for identifying high-risk patients to enable better management of ICI therapy and associated irAEs.


Assuntos
Antineoplásicos Imunológicos , Interleucina-7 , Humanos , Células Germinativas , Imunoterapia , Interleucina-7/genética , Estudos Retrospectivos , Fatores de Risco
8.
Blood ; 141(14): 1708-1717, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36599086

RESUMO

The downstream signaling of the interleukin-7 (IL-7) receptor (IL-7R) plays important physiological and pathological roles, including the differentiation of lymphoid cells and proliferation of acute lymphoblastic leukemia cells. Gain-of-function mutations in the IL-7Rα chain, the specific component of the receptor for IL-7, result in constitutive, IL-7-independent signaling and trigger acute lymphoblastic leukemia. Here, we show that the loss of the phosphoinositide 5-phosphatase INPP5K is associated with increased levels of the INPP5K substrate phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) and causes an altered dynamic structure of the IL-7 receptor. We discovered that the IL-7Rα chain contains a very conserved positively charged polybasic amino acid sequence in its cytoplasmic juxtamembrane region; this region establish stronger ionic interactions with negatively charged PtdIns(4,5)P2 in the absence of INPP5K, freezing the IL-7Rα chain structure. This dynamic structural alteration causes defects in IL-7R signaling, culminating in decreased expressions of EBF1 and PAX5 transcription factors, in microdomain formation, cytoskeletal reorganization, and bone marrow B-cell differentiation. Similar alterations after the reduced INPP5K expression also affected mutated, constitutively activated IL-7Rα chains that trigger leukemia development, leading to reduced cell proliferation. Altogether, our results indicate that the lipid 5-phosphatase INPP5K hydrolyzes PtdIns(4,5)P2, allowing the requisite conformational changes of the IL-7Rα chain for optimal signaling.


Assuntos
Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Fosfatidilinositol 4,5-Difosfato , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Transdução de Sinais/genética
9.
J Virol ; 97(1): e0125422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541802

RESUMO

Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.


Assuntos
Infecções por HIV , RNA Viral , Transcriptoma , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Interferons/genética , Interleucina-7/genética , RNA Viral/genética , Transcriptoma/imunologia , Proteína Supressora de Tumor p53/genética
10.
Oncoimmunology ; 11(1): 1965317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524211

RESUMO

Glioma is emerging as an aggressive type of glioma characterized by invasive growth pattern and dismal oncologic outcomes. microRNAs (miRNAs) have been attracting research attention in tumorigenesis. Herein, the aim of the current investigation was to explore the functional role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing miR-503 in glioma. The glioma tissues and corresponding normal brain tissues were collected from patients with glioma, followed by quantification of miR-503, kinesin family member 5A (KIF5A) and interleukin-7 (IL-7). EVs were isolated from bone marrow MSCs and identified by transmission electron microscope and nanoparticle tracking analysis. EVs from miR-503 mimic-transfected MSCs, miR-503 agomir,, oe-KIF5A, or sh-IL-7 was delivered into glioma cells to determine their effects on biological behaviors of glioma and T cells as well as the release of immunosuppressive factors. Lastly, a mouse model of glioma was developed to validate the function in vivo. miR-503 was expressed at a high level in glioma tissues while KIF5A was poorly expressed and targeted by miR-503. Furthermore, miR-503 loaded in MSC-EVs or upregulated miR-503 was demonstrated to facilitate glioma cell proliferation, migration and invasion accompanied by promoted release of immunosuppressive factors. Effects of overexpressed KIF5A on T cell behavior modulation were dependent on the IL-7 signaling pathway. Such results were reproduced in mice with glioma. Collectively, the discovery of miR-503 incorporated in MSC-EVs being a regulator that controls immune escape in glioma provides a novel molecular insight that holds promises to develop therapeutic strategies against glioma.


Assuntos
Vesículas Extracelulares , Glioma , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/imunologia , Interleucina-7/genética , Interleucina-7/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Humanos
11.
Nat Med ; 28(12): 2592-2600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526722

RESUMO

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Assuntos
Interleucina-7 , Melanoma , Humanos , Interleucina-7/genética , Interleucina-7/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/genética , Linfócitos T CD8-Positivos , Variação Genética
12.
Front Immunol ; 13: 985385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341446

RESUMO

MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.


Assuntos
Infecções por HIV , HIV-1 , Células T Invariantes Associadas à Mucosa , Humanos , Polimorfismo de Nucleotídeo Único , Interleucina-7/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
13.
Hum Vaccin Immunother ; 18(6): 2133914, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315906

RESUMO

Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.


Assuntos
Interleucina-7 , Vírus Vaccinia , Humanos , Camundongos , Animais , Interleucina-7/genética , Imunoterapia , Contagem de Linfócitos , Macaca fascicularis
14.
Front Immunol ; 13: 943510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059467

RESUMO

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.


Assuntos
Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/metabolismo
15.
Neuroscience ; 504: 21-32, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067950

RESUMO

BACKGROUND: Human herpes virus-6B (HHV-6B) was suggested as an important etiologic factor of mesial temporal lobe epilepsy, while the mechanism is still unknown. Here, we aimed to analyze antigens representing latent, early and late HHV-6B infection and the association with inflammatory cytokines in brain tissue and cerebral spinal fluid (CSF) from MTLE patients with HHV-6B-positivity. METHODS: Nested polymerase chain reaction (nPCR), real-time PCR, immunohistochemistry (IHC) and suspension bead array for cytokines were performed. RESULTS: Nested polymerase chain reaction (nPCR) in brain tissue revealed HHV-6B DNA in 19 of 49 MTLE patients (39%) and 1 of 19 controls (5%) (P < 0.001), but not in CSF. ICH showed HHV-6B early antigen (P41) positivity in 3 patients (6%), late antigen (gp116/54/64) positivity in 5 patients (10%), latent antigen (U94) positivity in 8 patients (16%), and multiple antigen (early and late or/and latent) positivity in 9 patients (18%). None of these HHV-6B related proteins were found positive in control brain tissue. PCR revealed significant up-regulation of IL-1a, IL-2 and IL-7 mRNA levels in the brain tissue from MTLE patients expressing early antigens compared to those expressing late, latent, multiple antigens, negative antigens and the controls. Suspension bead array of the CSF confirmed significant up-regulation of IL-1a and IL-7 protein expression from MTLE patients expressing early antigens compared to the other groups. CONCLUSIONS: Our finding suggests HHV-6B is a common etiologic agent of MTLE. Different virus life cycle may play an important modifying role in inflammatory biology that warrants further investigation. Though virus DNA is difficult detected in CSF, up-regulation of IL-1a and IL-7 in CSF indicates the two cytokines may be taken as indirect biomarker of HHV-6B infection.


Assuntos
Epilepsia do Lobo Temporal , Herpesvirus Humano 6 , Adulto , Humanos , Animais , Herpesvirus Humano 6/genética , Citocinas/genética , Interleucina-7/genética , Encéfalo , Reação em Cadeia da Polimerase em Tempo Real , Estágios do Ciclo de Vida
16.
Sci Rep ; 12(1): 12506, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869100

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising novel therapeutic approach. However, primary and secondary resistance to CAR-T cell therapy is commonly encountered in various clinical trials. Despite the comprehensive studies to elucidate the mechanisms of resistance, effective resolution in clinical practice is still elusive. Inadequate persistence and subsequent loss of infused CAR-T cells are proposed major resistance mechanism associated with CAR-T cell treatment failure. Thus, we generated CAR-T cells armored with IL-7 to prolong the persistence of infused T-cells, particularly CD4 + T cells, and enhanced anti-tumor response. IL-7 increased CAR-T-cell persistence in vivo and contributed to the distinct T-cell cytotoxicity profile. Using mass cytometry (CyTOF), we further assessed the phenotypic and metabolic profiles of IL-7-secreting CAR-T cells, along with conventional CAR-T cells at the single-cell level. With in-depth analysis, we found that IL-7 maintained CAR-T cells in a less differentiated T-cell state, regulated distinct metabolic activity, and prevented CAR-T-cell exhaustion, which could be essential for CAR-T cells to maintain their metabolic fitness and anti-tumor response. Our findings thus provided clinical rationale to exploit IL-7 signaling for modulation and metabolic reprogramming of T-cell function to enhance CAR-T cell persistence and induce durable remission upon CAR-T cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Diferenciação Celular , Humanos , Imunoterapia Adotiva , Interleucina-7/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
17.
Sci Rep ; 12(1): 10461, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729189

RESUMO

HER-2 targeted therapies, such as monoclonal antibodies (mAbs) and CAR-T cell therapy have been applied in the treatment of various of cancers. However, the anti-HER2 CAR-T cell therapy are limited by its expensive production procedure and fatal side effects such as cytokine storm or "On target, off tumor". The application of anti-HER2 mAbs to the soild tumor are also plagued by the patients resistant with different mechanisms. Thus, the recombinant protein technology can be presented as an attractive methods in advantage its less toxic and lower cost. In this study, we produced a HER-2-targeting recombinant protein, which is the fusion of the anti-HER-2 single chain fragment variable domain, CCL19 and IL7 (HCI fusion protein). Our results showed that the recombinant protein can induce the specific lysis effects of immune cells on HER-2-positive gastric tumor cells and can suppress gastric tumor growth in a xenograft model by chemotactic autoimmune cell infiltration into tumor tissues and activated T cells. Taken together, our results revealed that the HCI fusion protein can be applied as a subsequent clinical drug in treating HER-2 positive gastric tumors.


Assuntos
Quimiocina CCL19 , Interleucina-7 , Receptores de Antígenos Quiméricos , Proteínas Recombinantes de Fusão , Neoplasias Gástricas , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/farmacologia , Humanos , Interleucina-7/genética , Interleucina-7/farmacologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Autoimmun Rev ; 21(7): 103120, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595051

RESUMO

While physiological levels of IL-7 are essential for T cell proliferation, survival and co-stimulation, its escalated concentration has been associated with autoimmune diseases such as Rheumatoid arthritis (RA). Expression of IL-7 and IL-7R in RA monocytes is linked to disease activity score and TNF transcription. TNF stimulation can modulate IL-7 secretion and IL-7R frequency in myeloid cells, however, only IL-7R transcription levels are downregulated in anti-TNF responsive patients. Elevated levels of IL-7 in RA synovial tissue and fluid are involved in attracting RA monocytes into the inflammatory joints and remodeling them into proinflammatory macrophages and mature osteoclasts. Further, IL-7 amplification of RA Th1 cell differentiation and IFNγ secretion, can directly prime myeloid IL-7R expression and thereby exacerbate IL-7-mediated joint inflammatory and erosive imprints. In parallel, IL-7 accentuates joint angiogenesis by expanding the production of proangiogenic factors from RA macrophages and endothelial cells. In preclinical models, blockade of IL-7 or IL-7R can effectively impair joint inflammation, osteoclast formation, and neovascularization primarily by impeding monocyte and endothelial cell infiltration as well as inhibition of pro-inflammatory macrophage and Th1/Th17 cell differentiation. In conclusion, disruption of IL-7/IL-7R signaling can uniquely intercept the crosstalk between RA myeloid and lymphoid cells in their ability to trigger neovascularization.


Assuntos
Artrite Reumatoide , Interleucina-7 , Artrite Reumatoide/genética , Autoimunidade , Células Endoteliais/metabolismo , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Líquido Sinovial/metabolismo , Inibidores do Fator de Necrose Tumoral
19.
PeerJ ; 10: e13454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602889

RESUMO

Background: Myasthenia gravis (MG) is an antibody-mediated autoimmune disease. In recent years, accumulating evidence has indicated that long non-coding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs), contributing to the progression of various autoimmune diseases. Nevertheless, the regulatory roles of ceRNAs in MG pathogenesis remain unclear. In this study, we aimed to elucidate the role of lncRNA OIP5-AS1 as a ceRNA associated with MG progression. Methods: Real-time PCR was used to detect OIP5-AS1 levels in peripheral blood mononuclear cells (PBMCs) from patients with MG. Luciferase reporter assays were performed to validate the relationship between OIP5-AS1 and miR-181c-5p. CCK-8 and flow cytometry were performed to test the proliferation and apoptotic abilities of OIP5-AS1 in Jurkat cells. Furthermore, real-time PCR and Western blot assays were performed to explore the interactions between OIP5-AS1, miR-181c-5p, and IL-7. Results: The expression of OIP5-AS1 was up-regulated in patients with MG. Luciferase reporter assay indicated that OIP5-AS1 targeted the miR-181c-5p. Functional assays showed that OIP5-AS1 suppressed Jurkat cell apoptosis and promoted cell proliferation by sponging miR-181c-5p. Mechanistically, knockdown of OIP5-AS1 inhibited IL-7 expression at both the mRNA and protein levels in Jurkat cells, whereas the miR-181c-5p inhibitor blocked the reduction of IL-7 expression induced by OIP5-AS1 suppression. Conclusions: We confirmed that OIP5-AS1 serves as an endogenous sponge for miR-181c-5p to regulate the expression of IL-7. Our findings provide novel insights into MG processes and suggests potential therapeutic targets for patients with MG.


Assuntos
MicroRNAs , Miastenia Gravis , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Células Jurkat , Interleucina-7/genética , Leucócitos Mononucleares/metabolismo , Miastenia Gravis/genética , Apoptose/genética , Proliferação de Células/genética
20.
Cell Death Differ ; 29(11): 2163-2176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35459909

RESUMO

The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4-/- mice as prone to developing BCP-ALL with age. Irf4-/- preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4-/- leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animais , Humanos , Camundongos , Linfócitos B , Linfoma de Burkitt/patologia , Interleucina-7/genética , Janus Quinase 3/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...